Dynamics on character varieties and Hodge theory

Josh Lam

Humboldt University, Berlin

November 24, 2023 joint with Aaron Londosman & Dewich Litt.

Define \mathfrak{X}_n be the set of *n*-tuples of 2×2 matrices (A_1, \dots, A_n) such that $A_1 \cdots A_n = \mathrm{Id},$ $A_i \in \mathfrak{SL}(\mathfrak{C})$

considered up to simultaneous conjugation, i.e.

$$(A_1,\cdots,A_n)\sim (gA_1g^{-1},\cdots gA_ng^{-1}),$$

for all $g \in \mathrm{SL}_2(\mathbb{C})$.

Braid group action

• For $i = 1, \dots, n-1$, consider the maps $\sigma_i : \mathfrak{X}_n \to \mathfrak{X}_n$ given by $(A_1, \dots, A_i, A_{i+1}, \dots, A_n) \mapsto (A_1, \dots, A_iA_{i+1}A_i^{-1}, A_i, \dots, A_n).$ • For $i = 1, \cdots, n-1$, consider the maps $\sigma_i : \mathfrak{X}_n \to \mathfrak{X}_n$ given by

$$(A_1, \cdots, A_i, A_{i+1}, \cdots, A_n) \mapsto (A_1, \cdots, A_i, A_{i+1}, A_i^{-1}, A_i, \cdots, A_n).$$

• The σ_i 's generate an action of the Artin braid group B_n on \mathfrak{X}_n : $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, \sim braid relation

and $\sigma_i \sigma_j = \sigma_j \sigma_i$ whenever $i \neq j \pm 1$.

Braid group in pictures

The braid group Bn poremeterzes
 "braids" on n strands.

$$\begin{array}{c} \overline{\sigma}_{1}, \ldots, \overline{\sigma}_{n-1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}, \overline{\sigma}_{1} = \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1} = \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1} = \overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1} = \overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1}\overline{\sigma}_{1} \\ \overline{\sigma}_{1}\overline{\sigma}_{1$$

Upshot so far: action of B_n on \mathfrak{X}_n , where each element of the latter is represented by tuple of 2×2 -matrices (A_1, \dots, A_n) , $A_i \in \mathrm{SL}_2(\mathbb{C})$.

Upshot so far: action of B_n on \mathfrak{X}_n , where each element of the latter is represented by tuple of 2×2 -matrices (A_1, \dots, A_n) , $A_i \in SL_2(\mathbb{C})$.

Theorem (L.-Landesman-Litt)

Assume some A_i has infinite order. Then we can classify explicitly all finite orbits of the B_n -action on \mathfrak{X}_n .

Infinitely many examples

n=4,
$$\beta_4 \longrightarrow \mathfrak{F}_4$$

Example

$$A_1 = \begin{pmatrix} 1 + x_2 x_3/x_1 & -x_2^2/x_1 \\ x_3^2/x_1 & 1 - x_2 x_3/x_1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -x_1 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix},$$
where

$$A_1 A_2 A_3 A_{r^2} \text{ id}$$

$$x_1 = 2 \cos\left(\frac{\pi(\alpha + \beta)}{2}\right), x_2 = 2 \sin\left(\frac{\pi \alpha}{2}\right), x_3 = 2 \sin\left(\frac{\pi \beta}{2}\right),$$

for any $\alpha, \beta \in \mathbb{Q}$.

Example

$$A_1 = \begin{pmatrix} 1 + x_2 x_3 / x_1 & -x_2^2 / x_1 \\ x_3^2 / x_1 & 1 - x_2 x_3 / x_1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -x_1 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix},$$

where

$$x_1 = 2\cos\left(\frac{\pi(\alpha+\beta)}{2}\right), x_2 = 2\sin\left(\frac{\pi\alpha}{2}\right), x_3 = 2\sin\left(\frac{\pi\beta}{2}\right),$$

for any $\alpha, \beta \in \mathbb{Q}$.

Can check that these indeed give finite orbits of B_4 ...

Motivation (from algebrain german,

Consider the Riemann surface $X := \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$ for distinct $x_i \in \mathbb{C}$.

Observation

Fix a basepoint $x \in X$. A representation $\rho : \pi_1(X, x) \to SL_2$ is precisely a tuple (A_1, \dots, A_n) such that $A_1 \dots A_n = Id$. These are also known as local systems on X.

Consider the Riemann surface $X := \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$ for distinct $x_i \in \mathscr{P}_{\mathbb{C}}$

Observation

Fix a basepoint $x \in X$. A representation $\rho : \pi_1(X, x) \to SL_2$ is precisely a tuple (A_1, \dots, A_n) such that $A_1 \dots A_n = Id$. These are also known as local systems on X.

Therefore, \mathfrak{X}_n is the set of isomorphism classes of $\rho : \pi_1(X) \to \mathrm{SL}_2$. Therefore, \mathfrak{X}_n is the set of isomorphism classes of $\rho : \pi_1(X) \to \mathrm{SL}_2$.

Motivation

Observation

P' XX. Wax

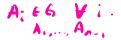
 \mathfrak{X}_n is the set of isomorphism classes of $\rho : \pi_1(X) \to \mathrm{SL}_2$.

Vary X in moduli, i.e. move the points x_1, \dots, x_n around. For X' near to X, we also get a representation $\pi_1(X') \to SL_2$.

Going around loops in the moduli space $\mathcal{M}_{0,n}$, get an action of $\pi_1(\mathcal{M}_{0,n})$ on \mathfrak{X}_n , same as before.

$$\sigma_{i} \in \pi_{i}(\mathcal{M}_{S,n})$$
which element is this?
$$x_{i} \neq f_{i}$$

isonaphita classe of K The finite orbits of the B_n -action on \mathfrak{X}_n therefore correspond to certain special local systems-MCG (mapping class group) finite, or canonical. braid sp the Man Remark 1 Trivial examples: those with monodromy a finite group $G \subset SL_2$.



The finite orbits of the B_n -action on \mathfrak{X}_n therefore correspond to certain special local systems-*MCG (mapping class group) finite*, or *canonical*.

Remark 1

Trivial examples: those with monodromy a finite group $G \subset SL_2$.

Remark 2

The same definition works for $\rho : \pi_1(\Sigma) \to \operatorname{GL}_n$, where Σ is any Riemann surface. Very non-trivial examples: conformal blocks of e.g. Wess-Zumino-Witten CFT.

The finite orbits of the B_n -action on \mathfrak{X}_n therefore correspond to certain special local systems-*MCG (mapping class group) finite*, or *canonical*.

Remark 1

Trivial examples: those with monodromy a finite group $G \subset SL_2$.

Remark 2

The same definition works for $\rho : \pi_1(\Sigma) \to \operatorname{GL}_n$, where Σ is any Riemann surface. Very non-trivial examples: conformal blocks of e.g. Wess-Zumino-Witten CFT.

Question

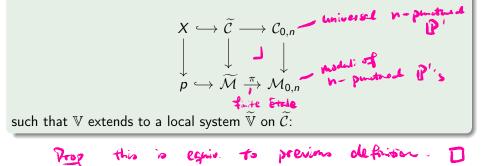
Can we classify all MCG-finite local systems?

10 / 27

Recall: $X = \mathbb{P}^1 \setminus \{x_1, \cdots x_n\}.$

Algebro-geometric reformulation of MCG-finiteness

A local system V on X is MCG-finite if and only if there exists a diagram



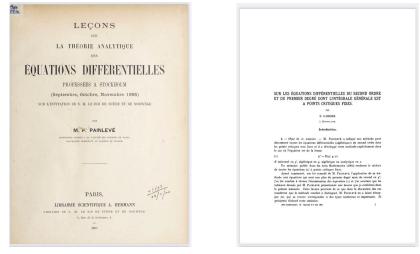
Josh Lam (Humboldt University, Berlin) Dynamics on character varieties and Hod November 24, 2023 11/27

By a Xy

When n = 4, the question is equivalent to finding all algebraic solutions of Painlevé VI.

$$\begin{aligned} \frac{d^2y}{dt^2} &= \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} \\ &+ \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left\{ \frac{\alpha}{2} + \frac{\beta}{y^2} + \frac{\gamma}{2} \frac{t-1}{(y-1)^2} + \frac{\delta}{2} \frac{t(t-1)}{(y-t)^2} \right\} \end{aligned}$$

History of PVI



(a) Painlevé's Stockholm lectures

(b) Gambier's work on Painlevé equations

Figure 1

History of PVI

Painlevé studied several non-linear ODEs with a special property "only movable singularities are poles". Due to a calculation error, hiss list did not include PVI, which was later added in by his student Gambier; the solutions are known as Painlevé transcendants.
 Solutions are known as Painlevé transcendants.

History of PVI

- Painlevé studied several non-linear ODEs with a special property "only movable singularities are poles". Due to a calculation error, hiss list did not include PVI, which was later added in by his student Gambier; the solutions are known as Painlevé transcendants.
- Discovered independently by Richard Fuchs, whose point of view is the modern one: they govern isomonodromic deformations of linear ODEs.

(a) Paul Painlevé

> Painters VI

(b) Richard Fuchs

14/27

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \not o$ on $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, with an A_i of infinite order, and SL_2 -monodromy. Then it is of one of two possible types:

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \rho$ on $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, with an A_i of infinite order, and SL_2 -monodromy. Then it is of one of two possible types:

it is of pullback type, i.e. for all X ∈ M_{0,n}, the local system is f*V' where f : X → D, D is a fixed curve, and V' a fixed local system on D

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \rho$ on $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, with an A_i of infinite order, and SL_2 -monodromy. Then it is of one of two possible types:

• it is of pullback type, i.e. for all $X \in \mathcal{M}_{0,n}$, the local system is $f^*\mathbb{V}'$ where $f: X \to D$, D is a fixed curve, and \mathbb{V}' a fixed local system on D iniddle curve. $f \in \mathcal{M}_{0,n}$

② 𝔅 is of the form $MC_{\chi}(𝔅)$, where 𝔅 is a local system of finite monodromy on 𝑋, with monodromy a complex reflection group.

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \ \rho \ on \ X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, with an A_i of infinite order, and SL_2 -monodromy. Then it is of one of two possible types:

- it is of pullback type, i.e. for all X ∈ M_{0,n}, the local system is f*V' where f : X → D, D is a fixed curve, and V' a fixed local system on D
- ② V is of the form MC_χ(U), where U is a local system of finite monodromy on X, with monodromy a complex reflection group.

Remark

The MCG-finite rank two local systems of pullback type are very constrained, and have been classified by Diarra-these only exist for $n \le 6$. Also previously studied by Kitaev and Doran.

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \ \rho$ on $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$. Then it is of one of two possible types:

- **①** *V* is of pullback type, or
- ② 𝒱 is of the form MC_χ(𝔅), where 𝔅 is a local system of finite monodromy on X, with monodromy a finite complex reflection group.

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \ \rho$ on $X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$. Then it is of one of two possible types:

- **●** *V* is of pullback type, or

Definition

An element of $A \in \operatorname{GL}_N(\mathbb{C})$ is a pseudo-reflection if $A - \operatorname{Id}$ has rank one. A finite complex reflection group $G \subset \operatorname{GL}_N(\mathbb{C})$ is a finite group generated by pseudo-reflections.

dihedul SP C 6/2

Suppose (A_1, \dots, A_n) corresponds to a MCG-finite rank two local system $\mathbb{V} \ \rho \ \text{on } X = \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$. Then it is of one of two possible types:

- **①** *V* is of pullback type, or

Definition

An element of $A \in GL_N(\mathbb{C})$ is a pseudo-reflection if A - Id has rank one. A finite complex reflection group $G \subset GL_N(\mathbb{C})$ is a finite group generated by pseudo-reflections.

Classified by Shephard-Todd: infinite family G(m, p, n), and 34 exceptional ones, e.g. $W(E_8)$, icosahedral group, Valentiner's group...

Example

Examples of MCG-finite local systems

$$A_1 = \begin{pmatrix} 1 + x_2 x_3 / x_1 & -x_2^2 / x_1 \\ x_3^2 / x_1 & 1 - x_2 x_3 / x_1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -x_1 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix}$$

where

$$x_1 = 2\cos\left(\frac{\pi(\alpha+\beta)}{2}\right), x_2 = 2\sin\left(\frac{\pi\alpha}{2}\right), x_3 = 2\sin\left(\frac{\pi\beta}{2}\right),$$

for any $\alpha, \beta \in \mathbb{Q}$.

Example

Examples of MCG-finite local systems

$$A_1 = \begin{pmatrix} 1 + x_2 x_3 / x_1 & -x_2^2 / x_1 \\ x_3^2 / x_1 & 1 - x_2 x_3 / x_1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -x_1 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix},$$

where

fc

$$x_{1} = 2\cos\left(\frac{\pi(\alpha + \beta)}{2}\right), x_{2} = 2\sin\left(\frac{\pi\alpha}{2}\right), x_{3} = 2\sin\left(\frac{\pi\beta}{2}\right),$$

or any $\alpha, \beta \in \mathbb{Q}$.
$$\text{Type} \bigcirc \left(= \operatorname{MC}_{\chi}(\mathcal{U})\right)$$

These examples correspond to dihedral groups inside $GL_N(\mathbb{C})$, and are the same as those first constructed by Yang-Zuo. We also found several other examples, e.g. corresponding to icosahedral group $H_3 \subset GL_3$.

There is a huge amount of literature on finding and classifying finite braid group orbits on \mathfrak{X}_n , especially the case of n = 4. In this case, \mathfrak{X}_4 may be written as

$$x^{2} + y^{2} + z^{2} + xyz = ax + by + cz + d.$$

There is a huge amount of literature on finding and classifying finite braid group orbits on \mathfrak{X}_n , especially the case of n = 4. In this case, \mathfrak{X}_4 may be written as

$$x^{2} + y^{2} + z^{2} + xyz = ax + by + cz + d.$$

This surface (with parameters *a*, *b*, *c*, *d* fixed) goes back to Fricke and Klein, and the dynamics was studied by Markoff. Various aspects of this dynamical system were studied by Goldman, Cantat-Loray, Bourgain-Gamburd-Sarnak, etc. Algebraic solutions to PVI were found by Andreev-Kitaev, Boalch, Doran, Kitaev, Dubrovin-Mazzocco, Hitchin..., and recently shown to be complete by a computer search by Lisovvy-Tykhyy.

Previous work on algebraic solutions to PVI

n=4 A., Az, Az are all miputent ~(1))

Invent. math. 141, 55-147 (2000) Digital Object Identifier (DOI) 10.1007/s002220000065

Inventiones mathematicae

Monodromy of certain Painlevé–VI transcendents and reflection groups

B. Dubrovin, M. Mazzocco

International School of Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy (e-mail: dubrovin@sissa.it, mazzocco@sissa.it)

Oblatum 19-III-1999 & 25-XI-1999 Published online: 21 February 2000 - © Springer-Verlag 2000

Abstract. We study the global analytic properties of the solutions of a particular finally of brindles VI equations with the parameters $\theta_i = y = 0$, $\delta = \frac{1}{2}$ and $\Delta_{ac} = (2\mu - 1)^2$ with athress $Y_{ac} \neq Z_{ac}$. We introduce a states of the balancing of adjust entrophysical states $Y_{ac} \neq Z_{ac}$. We introduce a states of the balancing of adjusterios trajectory of the state of t

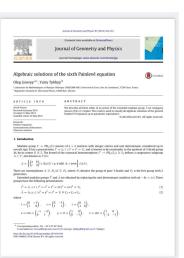
Introduction

In this paper, we study the structure of the analytic continuation of the solutions of the following differential equation

$$\begin{split} y_{xx} = & \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right) y_{x}^{2} - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right) y_{x} \\ & + \frac{1}{2} \frac{y(y-1)(y-x)}{x^{2}(x-1)^{2}} \left[(2\mu - 1)^{2} + \frac{x(x-1)}{(y-x)^{2}} \right]. \end{split}$$
 PVI μ

where $x \in \mathbb{C}$ and μ is an arbitrary complex parameter satisfying the condition $2\mu \notin \mathbb{Z}$.

This is a particular case of the general Painlevé VI equation PVI(α , β , γ , δ), that depends on four parameters α , β , γ , δ (see [Ince]).



(a) Dubrovin-Mazzocco

(b) Lisovyy-Tykhyy

Josh Lam (Humboldt University, Berlin) Dynamics on character varieties and Hod

A local system \mathbb{V} is of geometric origin if there exists a family of (smooth proper) varieties $\pi: Y \to X$, and *i*, such that \mathbb{V} is a summand of $R^i \pi_* \mathbb{C}$

A local system \mathbb{V} is of geometric origin if there exists a family of (smooth proper) varieties $\pi: Y \to X$, and *i*, such that \mathbb{V} is a summand of $R^i \pi_* \mathbb{C}$

Corollary

We can classify all rank two local systems on the generic $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$ of geometric origin, assuming one local monodromy A_i has infinite order.

A local system \mathbb{V} is of geometric origin if there exists a family of (smooth proper) varieties $\pi: Y \to X$, and *i*, such that \mathbb{V} is a summand of $R^i \pi_* \mathbb{C}$

Corollary

We can classify all rank two local systems on the generic $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$ of geometric origin, assuming one local monodromy A_i has infinite order.

Remark

Again, our classification splits into two types: pullback solutions, and middle convolution.

So, what is middle convolution?

• An MCG-finite rank two local system can be extended to a local system $\widetilde{\mathbb{V}}$ on a cover of $\mathcal{C}_{0,n} \to \mathcal{M}_{0,n}$.

- A remarkable theorem of Corlette-Simpson: 𝔍 is either pulledback from a curve, or it is of geometric origin (or both)

- A remarkable theorem of Corlette-Simpson: 𝔍 is either pulledback from a curve, or it is of geometric origin (or both)
- We can check that the first type is precisely those classified by Diarra ("pullback solutions"), so the interesting case is those of geometric origin.

- A remarkable theorem of Corlette-Simpson: 𝔍 is either pulledback from a curve, or it is of geometric origin (or both)
- We can check that the first type is precisely those classified by Diarra ("pullback solutions"), so the interesting case is those of geometric origin.

Claim

We can find character χ such that $MC_{\chi}(\mathbb{V})$ is unitary, and the same is true of all of its Galois conjugates.

- A remarkable theorem of Corlette-Simpson: 𝔍 is either pulledback from a curve, or it is of geometric origin (or both)
- We can check that the first type is precisely those classified by Diarra ("pullback solutions"), so the interesting case is those of geometric origin.

Claim

We can find character χ such that $MC_{\chi}(\mathbb{V})$ is unitary, and the same is true of all of its Galois conjugates.

This implies $\mathbb{U} := MC_{\chi}(\mathbb{V})$ has finite monodromy, as the monodromy of the sum $\bigoplus_{\sigma} \mathbb{U}^{\sigma}$ is discrete and contained in a compact (unitary) group.

- An MCG-finite rank two local system can be extended to a local system $\widetilde{\mathbb{V}}$ on a cover of $\mathcal{C}_{0,n} \to \mathcal{M}_{0,n}$.
- A remarkable theorem of Corlette-Simpson: 𝔍 is either pulledback from a curve, or it is of geometric origin (or both)
- We can check that the first type is precisely those classified by Diarra ("pullback solutions"), so the interesting case is those of geometric origin.

Claim

We can find character χ such that $MC_{\chi}(\mathbb{V})$ is unitary, and the same is true of all of its Galois conjugates.

This implies $\mathbb{U} := MC_{\chi}(\mathbb{V})$ has finite monodromy, as the monodromy of the sum $\bigoplus_{\sigma} \mathbb{U}^{\sigma}$ is discrete and contained in a compact (unitary) group. Finally, can analyze the local monodromies to see that the finite group must be a complex reflection group.

A few words on the condition of infinite local monodromy

We classified all rank two MCG-finite local systems on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, assuming one of the A_i 's has infinite order.

We classified all rank two MCG-finite local systems on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, assuming one of the A_i 's has infinite order.

• Our results recover those of Dubrovin-Mazzocco, and gives almost a conceptual classification of algebraic solutions to PVI.

We classified all rank two MCG-finite local systems on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, assuming one of the A_i 's has infinite order.

- Our results recover those of Dubrovin-Mazzocco, and gives almost a conceptual classification of algebraic solutions to PVI.
- Our result can also be thought of as the classification rank two representations of certain finite index subgroups of the braid group B_{n+1} .

We classified all rank two MCG-finite local systems on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, assuming one of the A_i 's has infinite order.

- Our results recover those of Dubrovin-Mazzocco, and gives almost a conceptual classification of algebraic solutions to PVI.
- Our result can also be thought of as the classification rank two representations of certain finite index subgroups of the braid group B_{n+1} .
- Some combinatorics left to do, to analyze all complex reflection groups...

How to get rid of the condition of A_i having infinite order? Suffices to show: any rank two MCG-finite local system on P¹ \ {x₁, · · · , x_n}, such that every simple closed loop has finite order, is of finite monodromy.

- How to get rid of the condition of A_i having infinite order? Suffices to show: any rank two MCG-finite local system on P¹ \ {x₁, · · · , x_n}, such that every simple closed loop has finite order, is of finite monodromy.
- Higher rank local systems?

- How to get rid of the condition of A_i having infinite order? Suffices to show: any rank two MCG-finite local system on P¹ \ {x₁, · · · , x_n}, such that every simple closed loop has finite order, is of finite monodromy.
- Higher rank local systems?
- We studied MCG-finite points here. What about MCG-finite subvarieties of \mathfrak{X}_n ?

Thank you for your attention!